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Abstract

Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our

laboratory. It is interesting to see that in an interference experiment (wave-like experiment)

the photon exhibits its particle property, and in a beam-splitting experiment (particle-like

experiment) the photon exhibits its wave property. The two-photon states are produced from

Type I and Type II optical spontaneous parametric down conversion, respectively.

We wish to report two EPR [1] type experiments. The first one is a two-photon interference

experiment in a standard Mach-Zehnder interferometer. Another one is a two-photon

splitting type experiment for the measurement of polarization correlation. It is interesting to

see that in the interference experiment (wave-like experiment) the photon exhibits its particle

property, and in the beam-splitting experiment (particle-like experiment) the photon exhibits its

wave property.

I Two-photon interference in a standard Mach-Zehnder

interferometer.

A pair of photons with different colors ( Aa = 632.8 nm, A2 = 788.7 nm, 155.9nm difference in

center wavelength) is directed to one input port of a Mach-Zehnder interferometer. Coincidence
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measurement is made between the two output ports of the interferometer with the help of a

300 psec coincidence time window. The interference behavior was studied in a wide range of

the optical path difference of the interferometer from white light condition, AL --_ 0, to about

AL _ 127crn (--_ 2 • 10s times the coherence length of the down converted beams). When the

optical delay of the interferometer is greater than the coincidence time window, the amplitudes in

which one photon follows the longer arm and the other follows the shorter arm of the interferometer

are "cut off" by the coincidence time win_iow. The particle property of the photon is demonstrated

by means of more than 50% interference visibility.

step

No|

Figure I-l: Schematic diagram of the experiment.

The experimental arrangement is shown in fig. I-1. A 10cm long Type I phase matching KDP

crystal pumped by a single mode 351.1nm CW Argon ion laser line is used to generate collinear

photon pairs at wavelengths 632.8nm and 788.7nm. The coherence length of the pump beam

was measured to be longer than 5m. The 351.1nm pump beam and the down converted beam_

were polarized in the extraordinary and ordinary ray directions of the crystal, respectively. A

Glan-Thompson prism was used to separate the collinear down converted photon beams from the

orthogonal polarized 351.1nm pump beam. Before the 351.1nm laser line was sent to pump the

parametric down conversion, a quartz dispersion prism was used to separate out the radiation
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linesof the laser plasma tube which are close to the 632.8nm and 788.7nm wavelengths.

The collinear 632.8nm and 788.7nm photon pair was then injected into a standard Mach-

Zehnder interferometer. The optical path differences of the interferometer AL - L - S can

be arranged to be shorter or longer than the coherence length, Icoh, of each beam of the down

conversion field and the coincidence time window, c. AT_,. The collineax photon pairs were

injected onto the beamsplitter with an incident angle of about ten to twelve degrees (near normal),

for which the reflected and transmitted intensities of the 632.8nm and 788.7nm beams were

measured to be equal (50% - 50%) within 5%.

Geiger mode avalanche photodiode detectors, operated at dry ice temperature, were used to

record coincidences in the two output ports of the Mach-Zehnder interferometer. Each of the

detector has a narrow band interference spectral filters. The central wavelengths of the filters are

632.8nm and 788.8nm with bandwidths of 1.4nm and 1.7nm, respectively. The output pulses

from detector A and detector B were then sent to N1, N2 counter and a coincidence circuit to

record coincidences. The coincidence time window AT_in was about 300psec.

We collected data for three regions of interest. In the first region, AL < l,_h, i.e., the optical

paths difference of the interferometer are equal to within the first order coherence length of the

signal and idler. In the second region, l_h < AL < c. ATcoi,_. In the third region, AL >

c. ATcoln. The following reported data are all direct measured values without any noise reductions
or theoretical corrections.

(1). The first region, AL < lcoh.

Fig. I-2 shows the normalized counting rate of Nc when the optical path difference changed

from white light condition to about 4pro. In this region, N1 and N2 both showed clear single

wavelength, 632.8nm and 788.7nm, respectively, first order interference pattern. However, Nc

shows a complecated interference pattern with 632.8nm, 788.7nm, and the beating and the sum

frequencies. The interference visibility is close to 100% with the 300psec coincidence window. The

solid curve in fig. I-2 is a theoretical fitting of equation (I-10). Fig. I-3 shows a typical first order

interference pattern of N2 for detector B. The interference visibility is about 90%, with a period

corresponding to wavelength 788.7nm.

Fig. I-4 shows the typical interference patterns of N_ at AL _ 115pro. The Arc pattern in

fig. I-4 is different than that in fig. I-2 in two ways, (A) the interference visibility is reduced and,

(B) the beating component and the 632.8nm and 788.7nm components of the modulations are

reduced and the sum-frequency modulation becomes predominant. The solid line in fig. I-4 is a

theoretical curve resulting from Gaussian spectral filter functions in equation (I-10). The single

detector counting rate is reported in fig. I-5. The interference visibility is reduced to about 42%.

(2). The second region, l_h < AL < c- AT_,,i,.

In this region both N1 and N2 become constant, however, Nc shows clear interference with the

sum frequency. Fig. I-6 shows the interference pattern of Arc for AL _ 0.5cm. Compare to the

300 psec coincidence time window and the coherent length of the down converted beams, which

satisfying l_oh < AL < c. ,--kTcoi,,. The interference visibility is 44% 4- 3% with modulation at a

wavelength of 351.1nm. In this region, all the measured interference patterns have modulation
visibilities close to but less then 50%.

(3). The third region,AL > c. ATcoi,_.

The interference patterns of Arc in the final region of interest, AL > c- ATe,i,,, is presented in
fig. I-7. An interference visibility of 75% 4- 3% was measured at AL _- 43crn with an interference
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Figure I-2: Normalized coincidence counting rate of Neat near white light condition (AL _ 0 ).
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Figure [-3: Single detector counting rate N2 at near white light condition (AL _ 0).
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period of 351.1nm. When AL increased to about 127cm, the interference visibility was measured

to be 56% + 3%. In this region, no interference modulations were found for N1 and N2.

In our earlier paper [2] a general theory for a two photon interference experiment in two

interferometers was developed. The experiment was suggested by Franson [3]. Experimental study

for two independent interferometers have demonstrated more than 50% interference visibility by

using short time coincidence time windows [4, 5]. The theory for this experiment is similar. The

coincidence counting rate is calculated from the fidd fourth order correlation function:

where E_ +) is the positive frequency part of the electric field in the Heisenberg picture evaluated

at the position G and the time tj. E_ -) is the hermitian conjugate of E_ +),

= / &,_h(w)e-i"a./(w) (I- 2)

aj is the destruction operator of the photons in the jth beam and fi is the pass band of the filter in

the beam peaked at flj. We take f_l + fh = wp, the pump frequency. In this experiment the filters

are chosen so that each detector only detects one of the down converted beam, i.e., 121 - 122 >> o"

the band width of the filters.

The average coincidence counting rate is given by

R, = -_ fro r dtldt2G(rltl,r2t2,r2tz, rltx)S(tl - tz, AT_,I_)

(I-3)

= -_ ffordtldt2 S(tt-tz, AT_,i,,)

where S(t, AT, oi,) is a coincidence detection function, AT_oi,, is the coincidence time window, and

the integrals are over the detection time T. A two photon amplitude, which is also called effective

two-photon wavefunction, is defined in (I-3) by,

=< oI I > (1-4)
The two photon part of the state that emerging from the down conversion crystal may be

taken to be [6],

where the 6 function indicate a perfect frequency phase matching condition. The wave number

phase matching condition is implicit in the choice of the location of the pinholes and the detectors.

Substitute (I-4) and (I-5) into (I-3), it is straight forward to show that,

• (tt, t2) = A(t_,t2)+ A(tx-AT, t2-AT)+ A(tl, t2-AT)+ A(tx-AT, t2) (I-6)

where A(tt, t2) is calculated in (I-8), AL = c- AT is the optical path difference in the two arms

of the interferometer. The first (second) term is the amplitude for which both photons follow the

short (long) path through the interferometer, and the third (fourth) term is the amplitude for one

photon follows the short (long) path and another photon follows the long (short) path. A simple

calculation using Gaussian filters

h = exp[-(o., - (I - 7)
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whereaj is the bandwidth of the jth filter, gives

A(tl,t2) = exp[-i(fht, + f_2t2)lu(tl - t2)

u(t) = 1¢ exp[-_t2/2]; 1/_ _ = 1/a_ + 1/a]

where K is a constant.

If we now substitute equations (I-6) and (I-7) into (1-3) and take

(I-8)

S(t, ATcol,) = exp(- I t I/2AT, oi,,)

the average counting rate may be written in the form

(I-9)

= P [Jo+ J,cos(fl,AT)+ J,cos(fl2AT)+

J+cos(12,AT- fl2AT)+ J_cos(fl,AT+ fl,AT)
(I- 10)

where

Jo = C[2erfc(A) + exp(-AT/2AT_.)erfc(A + EAT�2)

+ exp(--AT/2AT_oi.)erfc(h - F_AT/2)

•11 = 2C exp(-Y:2AT2/4)[exp(-AT/4AT_.)erfc(h + EAT�2)

+ exp(-AT/4AT_,)erfc(h - EAT/2)

(I-ll)

J+ = 2C exp(-_,2AT2)erfc(h/2)

J_ = 2Cerfc(A)

where A = 1/(4EAT,,,i,,), C is a constant that need not concern us. We remind the reader that the

error function erfc(z) =_0 as z =_ oo and erfc(z) =_ 2 as x =:_ -oo. The key point to uadexstaad

the behavior of the coincidence counting modulation is the variation of the J's with the increase

of AT = AL/c.

(1). For AL < l,_h, Jo = J_ = 2J+ = 2./_. From (I-10), the coincidence counting rate R_ has

oscillations at wl, w2, and their sum and difference frequencies. The visibility is 100% in this case.

As is seen in fig. I-2. As AL increases J1 and J+ rapidly decrease becoming negligible when AL is

approaching l_oh, the coherence length of the down converted beam. This can be seen in fig. I-4,

when AL = 115pro which is about one half of the coherence length l_oh, the beating component

and the 632.8nm and 788.7nm components of the modulations are reduced and the sum-frequency

modulation becomes predominant.

(2). l_oh < AL < c- AT_oi., as AL increases to be greater than l_oh both Jl and J+ are zero
and we left with

ac = Ro[Jo + J_ cos(n.aT)] (I- 12)
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which indicates that the modulation is only at the sum frequency. The modulation visibility can

only approach to a maximum value of 50%, this is because the contribution of the last two terms

in J0 which arise from the state amplitudes in which one photon follow the longer and the other

the shorter path of the interferometer. Fig. I-6 clearly shows this modulation.

(3). AL > c. ATco_,. In this region, the interference pattern looks the same as in case (2).

however, the interference visibility increases to more than 50%. This is because of the vanishing of

the last two terms in J0, the interference visibility is predicted to be 100% in idealized experimental

conditions. This interference behavior is clearly demonstrated in fig. I-7.

The above simple theory of the quantum mechanical model provides a good quantitative un-

derstanding of what is happening in this experiment without the introduction of any artificial

parameters. In the region of AL < lcoh, all J's contribute to the interference pattern, which is not

distinguishable from a classical model. In this region the first order interference pattern appears in

both N1 and N2 counting. The coincidence modulation may explained as the result of the product

of N1 and N2 modulations. When AL increases, ,/1 and J+ approach zero due to the vanishing of

the factor exp(--_2AT2). This effect may be considered also to be a classical wave behavior. In

the second region, Icoh < AL < c. ATcoi_, the coincidence interference behavior shown in (I-12) is

expected. Since the wx and w2 beams never meet at the same detector because of the filters, and

each beam does not interfere with itself when AL > lcoh, the coincidence modulation is a non-local

two photon interference effect. In the third region, it is by now well known that under condition

AL > c. ATcoi_, the interference is a purely quantum effect. It is impossible to have a classica_

model to explain the coincidence counting rate modulation of more than 50%. Mathematically the

increase of the visibility is due to the vanishing of the factor exp(-AT/2AT_oi_) in J0. Physically

this is due to the cut off by the coincidence time window of the state amplitudes in which one

photon follows the longer path and other the shorter arm of the interferometer. This is equivalen_

to the projection of a quantum entangled EPR state [7, 8]

qtEPR = A(tx, t2) + A(tx - AT, t2 - AT) (I-- 13)

from the initial state. For AL > c. AT_oi,, the entangled two-photon EPR state (I-13) is realized

by the measurement, which takes advantage of the particle nature of the light quanta in a wave-like

experiment.

II Einstein-Podolsky-Rosen-Bohm Experiment By

Splitting A Pair of Orthogonally Polarized Photon.

Type I parametric down conversion has drawn a great deal of attention since the first application

[9] of it in an Einstein-Podolsky-Rosen-Bohm experiment [10]. The experimental study of Type II

photon pairs was performed before Type I in our laboratory. However, the experimental results

seemed to suggest that the orthogonally polarized signal and idler photon pair do not have the

expected quantum entanglement. This phenomenon has troubled us and many other physicists

with whom we have communicated in the past [11]. The entanglement of the Type II photon

pair was demonstrated recently in our laboratory under two experimental conditions: (1) using

a thin nonlinear crystal and (2) detecting coincidences in narrow spectral bandwidth [12, 13]. In
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this section, we wish first to report the experimental study of this crystal length and detection

bandwidth dependent entanglement of Type II down conversion. Then we report an experim_tal

study of entangled two-photon EPR-Bohm states in Type II down conversion with linear, circular

and elliptical polarizations.
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Figure lI-I: Schematic experimental set up.

The experimental set up to study the effect of crystal length and detection bandwidth depen-

dent entanglement is illustrated in fig. II-1. A single mode CW Argon ion laser line of 351.1nm

was used to pump a BBO (8 - BaB204) nonlinear crystal. The BBO was cut for a Type !1

phase matching condition to generate a pair of orthogonally polarized signal and idler photons

coLlinearly and degenerately in 702.2nra wavelength. Two BBO crystals with lengths of 5.65mm

and 0.5ram, respectively, were used in the experiments. The 702.2nm pairs were separated from

the pumping beam by a UV grade fused silica dispersion prism, then directed collinearly at a cear

normal incident angle to a polarization independent beam splitter which has 50%- 50% reflection

and transmission coefficients. In each transmission and reflection output port of the beamsplitter

a Glan Thompson linear polarization analyzer followed by a narrow bandwidth interfer_ce spec-

tral filter were placed in front of a single photon detector. The photon detectors are dry ice cooled

avalanche photodiodes operated in Geiger mode. The output pulses of the detectors were then seat
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to a coincidence circuit with a 3nsec coincidence time window. The two detectors are separated

by about 2m, so that compared to the 3nsec coincidence window, the detections axe space-like

separated events. The coincidence counting rates were studied as functions of angles 01 and 02,

where 0i is the angle between the axis of the ith polarization analyzer and the direction, which

is defined by the o-ray polarization plane of the BBO crystal. Keep in mind that a right-handed

natural coordinate system with respect to the ki vector as the positive direction is employed for

the discussions in this paper. The following form of coincidence rate as a function of 0a and 02

was observed in the experiments,

/?_ =/_(cos 201 sin 202 + sin 201 cos 202 - p sin 01 cos 02 sin 02 cos 01) (II - 1)

where p is a parameter which depends on the crystal length, the detection bandwidth, and the

group velocities of the o - e beams inside the crystal. If p = 2, eq. (II-1) reduces to,

P_ =/?_ sin 2(0a - 02) (II- 2)

which is the expected quantum correlation for the entangled two-photon EPR-Bohm state

[_) = 1/v/2([ Xa)@ I Yz)+ I Y_)@ I X2)) (II-3)

IqJ) quantum mechanically indicates a two-photon polarization state which is a superposition of

the quantum probabihty amplitudes:

(1) 1 o- ray transmitted)@ l e- ray reflected)

(n-4)
(2) [ e - ray transmitted)@ ] o- ray reflected)

when the orthogonally polarized photon pair meets the beamsplitter. On the other hand, if p = 0

the interference cross term does not contribute. State (II-3) can not be concluded and no sign of

the entanglement of the pair can be seen from the measurement.

Fig. II-2 reports the measured values of p for BBO crystals with lengths of 5.65mm and 0.5ram

for different bandwidths of the filters. Note that for the 5.65mm BBO crystal p was always sub-

stantially less than 2 for the filters that used in the measurements. For the 0.Smrn BBO, p = 1.98

was achieved with a lnrn bandwidth spectrum filter. The solid curves are the fits to a theoretical

model which will be presented below. The values of p were obtained from the measurements of

coincidence rate as functions of 01 and 02. Fig. 11-3, fig. 11-4 are typical measurements which

reflect the different coincidence behavior for 5.65mm and 0.5ram BBO crystals. In fig. II-3, 01

was set to 45 ° and the coincidence rate was mapped out as a function of 02. In fig. 1I-4, both 0x

and 02 were changed, keeping the sum of 01 and 02 equal to 90 °. In both fig. I1-3 and fig. 11:4 the

filters were 1rim bandwidth. By fitting many similar curves, p = 0.72 4- 0.07 and p = 1.98 4- 0.04

were determined for 5.65mm and 0.5ram crystals, respectively.

For Type II down conversion the two photon part of the state that exits the down conversion

crystal may be calculated from the standard theory for parametric down conversion to be [6],

g d_xd_2,5(_l +to2-%,)_b(tal)ato(tal(k,))a_(w2(k2))]O) (II-5)

where w and k represents the frequency and the wave vector for signal (1), idler (2), and pump

(p). The frequency phase matching condition is exphcitly displayed by the delta function, and the
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wave number phase matching condition is implicit in the choice of the location of the detectors, in

this experiment we consider collinear down conversion. The function lk(w) is determined from the

standard theory of down conversion. It depends on the length of the crystal, and D = c/uo- c/u,.

We shall refer to D as the two-photon dispersion. The subscript indies o and e for the creation

operators indicate the ordinary and extraordinary rays of the down conversion, traveling along

the same direction as the pump, the "z-direction. The coordinate axes x and Y are chosen along
the the polarization direction of the o-ray and the e-ray, respectively.

The fields at the detectors 1 and 2 are given by

E_+)(t) = o_,f d_f_ (w)exp[-iw(t - _'1)1_j _t_jaj(w)

(II-6)
E(2+)(t) = o_, f dwf2(w) exp[-iw(t - 1"2)] Ej e2ejai(w)

where aj is the destruction operator of the photons, j = o, e, i is in the direction of the ith

linear polarization analyzer axis, i = 1, 2, at and cx, are the complex transmission and reflection

coefficients of the bea_splitter. The function fi(w), i = 1, 2, is the spectral transmission coefficient
function of the filter in front of the ith detector.

The counting rate can be written in terms of the square of the effective two-photon wave

function (I-3), which has been used in the calculation of the first experiment. It is straight

forward to show from (II-_),(II-6),

*(t,,t2)=txto_[_l'_o_2"d,A(tl-rl, t2-r2)+_l._cd2-_oA(t2-r2, t_-rx)] (1I-7)

where

A( tl, t2) = u(tl - t2) exp(-iftltx)exp(-ifht2)

(n-s)
= A0y exp(i t)

where we have assumed that the filter fl and f2 are peaked around f_1 and f12, respectively, where

Ill + f_2 = toe. For simplicity we take them to have the same shape so that f'(to) = f_(to + fl_) =

f_(to + f_2). _b can be computed from the standard theory of opticM parametric down conversion.

Taking the origin of the coordinates at the output side of the crystal, and letting _b'(to) = _b(w+f/1),
we find

_b'(to) = [1 - exp(-itoDL)]/iwD (II - 9)

The average coincidence counting rate isgiven by (I-2).In the followingcalculationwe assume

S(t, AT, an) = 1 for a 3nsec time window (tl - t2 << AThos,,). Taking the filters to be Gaussian

f'(to) = f0 exp(-to2/2_ 2) (II- 10)

it is not difficult to show that the coincidence counting rate becomes

/_ =/?.co[COS 201 sin 202 + sin 20_ cos 202 - p sin 01 cos 01 sin 02 cos 02] (II - 11)

where
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p= 2(c+- c_)/(c++ c_) (n- 12)
with

C+ = K f-+_o dt_erfc(s + t) + erfc(s - 012

C_ = K f-+_o dt[2erfc(t) - erfc(s + t) + erfc(t - s)] 2

where erfc is the error function, 1( is a constant, and parameter

(II- 13)

s = aDL (II - 14)

The only parameter that p depends is s, which shows the dependence on a, the bandwidth of the

filters, D, the two-photon dispersion, and L, the length of the crystal. By sketching the integrals,

it is not difficult to show that for a very long crystal p _ 0, because C+ - C _ 0, and for a short

crystal p _ 2, because C _ O.

The functions in (II-13) are easily evaluated numerically and fit the data accurately with no

free parameters. The solid fines in fig. II-2 are the theory curves for 5.65mm and 0.Smrn BBO

crystals. The curves agree with the measured values of p within reasonable experimental error.

One can achieve p _ 2 with bandwidth filters less than lnm for a 0.5ram BBO thin crystal.

Using a 0.5ram crystal and a lnm bandwidth filter to achieve p -- 2, measurements for two-

photon polarization entangled EPR states were made. The use of a quarter wave plate and a

beamsplitter easily can demonstrate the quantum mechanical entanglement of arbitrary elliptical

polarization states in Type II down conversion. The experimental set up is the same as in fig. H-

1, except a quarter wave plate is placed after the O.Smm BBO crystal. If the fast axis of the

quarter wave plate is oriented at angle ¢ with respect to the direction, the orthogonal linear

polarization states I X) and I Y) are transformed to orthogonal elliptical polarization states.

After the beamsplitter a two-photon entangled state with elliptical polarizations is produced,

I q/) = 1/v r_ cos • sin 0 + i cos ¢ i sin •
-isin_ 1 -icos¢ 2 1 2

where state I_) is a superposition of the quantum probability amplitudes:

(17. (cos ,I, IX')- isinO I Y'))transmitted® (sinO I X') + icosO [Y'))ref/eded

(2). (sin ¢]X'> + i cos _lY')transmitted ® (cos ,x,I x')- i sin'_lY'))reflected

when the orthogonal elliptical polarized photon pair meets the beamsplitter.

The coincidence counting rate for linear polarization analyzers is then,

R_ = R.,o[sin 2(2¢) cos 2(0'1 + 0'2) + cos 2(2¢) sin 2(0'x - 0'2)] (H- 16)

where 0_ is the angle between the axis of the ith polarization analyzer and the ]X_) direction. Care

has to be taken to follow the rules of natural coordinate system, especially for the reflected beam.

Note that the direction of [X_) is opposite to that of IX'l).
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Figure II-4: Coincidence Measurements for Linear Polarization States when Ol + 02 = 90"was

preserved.
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Figure II-5: Coincidence Measurements for Circular Polarization EPR-Bohm State.
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Figure II-7: Coincidence Measurement for Elliptical Polarization State with Quarter Waveplate
oriented at 71.5 ° .

560



If ¢ = 0 °, state (II-15) becomes state (II-3) which is a two-photon linear polarization entangled

state. Quantum correlations given by eq. (II-2) were observed experimentally, see fig. II-3 and

fig. II-4, with modulations about(98 + 2)%.

For ¢ = 45 °. State (II-15) becomes the circular polarization EPR-Bohm state,

I _) = ljv_(I R1)@ I R2)+ I Lt)@ I L2))

The expected quantum correlations

(If-17)

Rc= cos2(0,+02)= cos2(0;+ 0'2) (II-18)
were measured experimentally. Fig. II-5 reports the measured results. The modulation is about

(98 =i:2)%.

When the quarter wave plate was set to • = 26.5 ° and 71.5 °, fig. II-6 and fig. II-7 report four
0 g

typical measurements which were taken under the conditions: 81 + 02 - 90". The solid lines in

these figures are the theory curves of (II-18). Note, here, we use 8' system to define the angles for
the analyzers.

Contrary to the coincidence counting rate, the single detector counting rate remains constant

for all the above measurement. Fig. II-8 reports a typical counting rate for detector 2 in a
measurement.

A pair of orthogonally polarized light quanta enters a single port of a beamsplitter, if one of the

photons, for example the transmitted one, is detected to be linearly polarized in a certain direction,

0t, the other one can be predicted with certainty to be linearly polarized in the direction 82. This

makes the experiment EPR type argument. Addition to this argument, it is alsointeresting to see

that 82 is not necessarily perpendicular to 8x, the value of 02 depends on the EPR state prepared

by the observer.
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Figure II-8: Single detector counting rate.
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This simple beam-splitting experiment is a particle-like experiment. Eq. (II-4) is based on the

argument that the photon can be either transmitted or reflected by a beamsplitter. On the other

hand this simple beam-splitting type experiment demonstrated the wave property of the photon.

The 100% modulation of the coincidence counting rate is essentiMly an interference superposition

of the two-photon amplitudes in (II-7). The overlap and non-overlap of the amplitudes A(h -

rl, t2 - r2) and A(t2 - r2, tl - rl) is a good.measure of the wave packet picture of the photon, which

results the crystal length and detection bandwidth dependent of the two-photon entanglement.

We wish to _hank D.N. Klyshko for many useful discussions. This work was supported partially

by the Office of Naval Research Grant No. N00014 - 91 - J - 1430.
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